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Introduction: ▪ Experiment: Human brain against computer
▪ Conceptional comparison: Brain vs. computer
▪What makes the human brain so outstanding? – Can we mimic it ?

Part1: ▪ Neuromorphic computing – what is it?
▪ Neuromorphic tasks in AI
▪ Anatomy of computational “heavy” workloads – the actual problem
▪ Computational challenge: Matrix-vector multiplications 
▪ Current and future AI acceleration hardware

Part 2: ▪ From brain-like to Deep Neural Networks (DNNs)
▪ Training of DNN with backpropagation algorithm - Mathematical background
▪ Status of today’s Deep Neural Network processing

Part 3: ▪ Analog electrical crossbar array vs. DNN
▪ Synaptic weight processing operations
▪ Targeted device properties for analog electrical crossbar arrays

Part 4: ▪Memristive devices for synaptic weight implementation
▪ Examples: Resistive Random Access Memory (ReRAM)

Phase Change Memory (PCM)
Ferroelectric Tunneling Junctions (FTJ)

Summary
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Keywords of this Tutorial

Neuromorphic computing

Analog vs. digital processing

Crossbar arrays

Memristive devices

Deep Neural Networks

Backpropagation algorithm

Non-volatile memory

PCM / ReRAM / FTJ

Matrix-vector multiplication

(Non) von-Neumann architecture

CPU / GPU / FPGA / ASIC
Accelerators

Training / Inference

Multiply & accumulate

Synaptic weights

Human brain
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Experiment: “Human Brain against Computer”
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Experiment: “Human Brain against Computer”



Slide 10R. Dangel  - Analog Crossbar Arrays – Future Neuromorphic Workhorses  for Neural Networks

What makes the Human Brain so Outstanding ?

◼ Signaling between neurons: Spikes, spike trains

◼ Neuron activation: “Integrate and Fire”

◼ Learning: Adjustment of the synaptic weights

Spike Timing Dependent Plasticity: 

“Neurons that fire together wire together”

◼ Power efficiency: human brain  20 Watts   /   supercomputers  up to MWatts

◼ Brain recognizes patterns and images  /  can deduce facts from raw (noisy) data

◼ Human brain:   100 billions nerve cells (= neurons)

◼ Each neuron receives signals from 1’000 – 10’000

other neurons via synapses → massive connectivity

◼ Signals transmitted by synapses are adjustable:           

→ “synaptic weight”

 http://biomedicalengineering.yolasite.com/neurons.php

Brain at neuron levelBrain at neural network level

 http://www.sciencephoto.com/dennis-kunkel-microscopy-collection
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Conceptional Comparison: “Human Brain vs. Computer”

Question:  Can we mimic the human brain to exploit its superiority in certain applications ?    

Human brain Different (complementary) abilities Today’s Computer

▪ Nerve cells (neurons) are processing units

▪ Analog operation

▪ Distributed processor and memory 

▪ Massively, massively parallel processing

▪ Slow information processing

▪ Redundancy and fault-tolerance properties

▪ ….

▪ Transistors are processing units

▪ Digital operation

▪ Centralized processor and memory

▪ (Mostly) serial processing

▪ Very fast information processing

▪ Reliable and precise

▪ ….

Different
structure
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Part1: ▪ Neuromorphic computing – what is it?
▪ Neuromorphic tasks in AI
▪ Anatomy of computational “heavy” workloads – the actual problem
▪ Computational challenge: Matrix-vector multiplications 
▪ Current and future AI acceleration hardware
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Neuromorphic Computing – What is it ?

Ethymological:

Neuromorphic computing is a brain-inspired signal processing 
technology that tries to mimic the neuro-biological architecture
of the brain and its functions.
As interdisciplinary technology, it involves
◼ biological, 
◼ physical, 
◼ mathematical,
◼ computer science, 
◼ and electronic engineering concepts

to design and realize new artificial neural network systems.

“neuro”  related to nerves or nervous system 

“morphic”  having form or structure of…

Definition:

 http://www.web3.lu/category
/science-philosophy/
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Neuromorphic Tasks in AI

Autonomous Decisions

Recommendations

Act

Image Classes

Emotions Anomalies

Segments

Detect or Extract

Deduce Facts from Data:
- floor-to/from-button

Make Decisions:
- stop at floor(s)

Memorizing Information:
- remember pending call

Elevator Control:

Neuromorphic challenges in AI are tasks which normally require human “intellect”, e.g.:

◼Memorizing complex information

◼ Deducing facts from raw (unstructured)  Data

◼ Making recommendations and decisions

in the presence of 
uncertainty and ambiguity
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Anatomy of “Heavy” Computational Workloads – The Actual Problem

Scientific Workloads

(electro) Chemistry

Drug Discovery

Weather/Climate

PDEs

AI / Machine Learning

Graph Analytics

Clustering Algorithms Image Classification

Time-Series Predictions

Backpropagation
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Computational Challenge: Matrix-Vector Multiplications

Matrix-vector multiplications of the form

are common to the mentioned workloads and dominate the computation time and energy 
consumption.

𝑾𝒙 =

𝑤0,0

𝑤1,0

𝑤2,0

𝑤0,1

𝑤1,1

𝑤2,1

𝑤0,2

𝑤1,2

𝑤2,2

⋯

𝑤0,𝑁

𝑤1,𝑁

𝑤2,𝑁

⋮ ⋱ ⋮
𝑤𝑀,0 𝑤𝑀,1 𝑤𝑀,2 ⋯ 𝑤𝑀,𝑁

∙

𝑥0
𝑥1
𝑥2
⋮
𝑥𝑁

=

σ𝑖=0
𝑁 𝑤0,𝑖 𝑥𝑖

σ𝑖=0
𝑁 𝑤1,𝑖 𝑥𝑖

σ𝑖=0
𝑁 𝑤2,𝑖 𝑥𝑖

:
:

σ𝑖=0
𝑁 𝑤𝑀,𝑖 𝑥𝑖

Matrix-vector multiplications are “computationally expensive” !

Our mission
Develop dedicated hardware (→ Analog Crossbar Arrays) which enables 
efficient analog implementation of matrix-vector multiplications and
therefore acceleration of Deep Neural Network Learning 
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Current and Future AI Acceleration Hardware

◼ GPUs were originally developed
for manipulation of images which 
relies on similar mathematical basis 
than neural networks 

◼ GPUs operate on vectors of data
in parallel

◼ GPUs are effective at processing
same set of operations in parallel
(single instruction, multiple data 
(SIMD)

◼ GPUs have well-defined instruc-
tion-set and fixed data width

◼ FPGAs contain an array of 
programmable logic blocks, and
a hierarchy of reconfigurable 

interconnects

◼ FPGA are reconfigurable, what 
makes evolution of hardware, 
framework and software easier 

◼ FPGAs are effective at processing 
same or different set of operations
in parallel (multiple instructions, 
multiple data (MIMD)

◼ FPGAs do not have predefined 
instruction-set or fixed data width.

Graphics Processing
Unit  (GPU)

Field-Programmable 
Gate-Array  (FPGA)

Application-Specific
Integrated Circuit  (ASIC)

Central Processing
Unit  (CPU)

Resistive Processing
Unit (RPU)

Efficiency

◼ ASICs are application-specifically 
designed hardware

◼ ASICs employ special strategies,
e.g. optimized memory use or use
of lower precision arithmetics

Flexibility

C  o   - P  r  o  c  e  s  s  o  r  s

Current Workhorse Limited spread Under investigation

◼ CPUs were originally designed
for general computing workloads

based on 
Analog Crossbar

Arrays
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Part 2: ▪ From brain-like to Deep Neural Networks (DNNs)
▪ Training of DNN with backpropagation algorithm –

Mathematical background
▪ Status of today’s Deep Neural Network processing
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“Cat”

“Dog”

“Mouse”

▪ Omni-directional signal flow

▪ A-synchronous pulse signals

▪ Information encoded in signal timing

Difficult to implement efficiently 
on standard computer hardware

Information 
processing flow

http://www.sciencephoto.com/dennis-kunkel-microscopy-collection

From Brain to Brain-like Neural Network
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Artificial Neural Network

◼ ANNs are neuromorphic computing models, which mimic the brain in a simplified way.

◼ ANNs are composed of multiple nodes (= artificial neurons) which can be arranged in special configurations

◼ The first developed, easiest and most common ANN is the:

Feed-forward Deep Neural Network (DNN) 

Simplified model

Information processing flow

“Mouse”

“Dog”

“Cat”

DNN      better fit to standard hardware

▪ Feed-forward sequential processing

▪ Information encoded in signal amplitude

▪ Neuron activation: Weighted sum + Threshold

▪ Training with “Backpropagation algorithm”

Brain-like neural network  Artificial Neural Network (ANN) 
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Operation Phases of Deep Neural Network (DNN)

Cat

Cat

Computational speed and
efficiency are extremely 
important because training
of Deep Neural Networks can
range from days to weeks
(even with high-performance 
computers) !
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DNN Training by Backpropagation Algorithm  (1 of 3)

Generic scheme for iterative error minimization by adjusting the synaptic weights 
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Components:

◼ Layers of neurons

◼ Synaptic interconnections

Mathematical operations:

𝑥𝑖

𝜎
(𝑥

𝑖)

0

1

0

: Signal vector

: Synaptic weight matrix    𝑊𝑛

: Per-element neural (non-linear) 
activation function (sigmoid):

𝑾𝑛

𝜎

Neural net as chain of vector operations:

𝑾1 𝜎 𝑾2 𝜎
Input
vector

Output
vector

𝑾3 𝜎

DNN Training by Backpropagation Algorithm  (2 of 3)

x y

𝑾1𝒙 =

𝑤10,0 𝑤10,1
𝑤11,0 𝑤11,1

. . 𝑤10,𝑁

. . 𝑤11,𝑁
: :

𝑤1𝑀,0 𝑤1𝑀,1

:
. . 𝑤1𝑀,𝑁

∙

𝑥0
𝑥1
:
𝑥𝑁

= 

σ𝑖=0
𝑁 𝑤10,𝑖 𝑥𝑖

σ𝑖=0
𝑁 𝑤11,𝑖 𝑥𝑖

:
σ𝑖=0
𝑁 𝑤1𝑀,𝑖 𝑥𝑖

Multiply

Accumulate
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DNN Training by Backpropagation Algorithm  (3 of 3)

x 𝑾𝟏 𝜎 𝑾𝟐 𝜎 y𝑾𝟑 𝜎
𝒙𝟏 𝒙𝟐 𝒙𝟑

x 𝜎′ 𝜎′ 𝑾𝟑
𝑻 𝜎′𝑾𝟐

𝑻𝑾𝟏
𝑻

𝜹𝟏 𝜹𝟐 𝜹𝟑

x 𝑾𝟏 𝜎 𝜎 y𝑾𝟑 𝜎
𝒙𝟏 𝒙𝟐 𝒙𝟑𝜹𝟏 𝜹𝟐 𝜹𝟑

𝑾𝟐
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=
1
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෍

𝑖

𝑦𝑖 − 𝑦target 𝑖
2

e

ee








𝚫 𝚫 𝚫

Forward Propagate: Input x➔ Response y
Store neuron activation patterns 𝒙𝒊 for later use

Determine output error  e:

Backward Propagate: Which neuron inputs have 
strongest influence on  ?

→ Error gradient vectors 𝜹𝒋

Adjust weights that were active (∝ 𝒙), proportionally 

to their influence on error (∝ 𝜹):  

𝜟𝑾 = −𝜂 𝒙 𝜹

For many training case inputs x with target response ytarget:

⨂ 𝛥𝑤𝑖𝑗 = −𝜂 𝑥𝑖 𝛿𝑗

e
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Status of Today’s Deep Neural Network Processing

◼ Processing dominated by large matrix operations

Forward propagation:

Backward propagation:

Weight update:

Scale ∝ 𝑁2

◼ Inefficient on standard Von-Neumann architecture systems:

▪ (Mostly) serial processing
▪ Low computation to IO ratio 
▪ →Memory bottleneck

Neurons/layer

Analog Crossbar Arrays

◼ Large training datasets: Thousands of training cases

𝑾

𝑾𝑇

𝜟𝑾
Current
situation

Need for faster
and more efficient
DNN processing

Borrow some concepts from the brain:
▪ Analog signal processing
▪ Fully parallel processing
▪ Tight integration of processing and memory

Today’s standard computer architecture
(→ proposal by John Von-Neumann in 1945)

High performance computer
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Part 3: ▪ Analog electrical crossbar array vs. DNN
▪ Synaptic weight processing operations
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Analog Electrical Crossbar Array
Feedforward DNN 

w/ fully connected neural layers
Implementation

Mapping
w m,0

w m,1

w m,N

Synaptic weightCross-point

𝐼0
𝐼1
𝐼2
⋮
𝐼𝑀

=

𝐺0,0
𝐺1,0
𝐺2,0

𝐺0,1
𝐺1,1
𝐺2,1

𝐺0,2
𝐺1,2
𝐺2,2

⋯

𝐺0,𝑁
𝐺1,𝑁
𝐺2,𝑁

⋮ ⋱ ⋮
𝐺𝑀,0 𝐺𝑀,1 𝐺𝑀,2 ⋯ 𝐺𝑀,𝑁

∙

𝑉0
𝑉1
𝑉2
⋮
𝑉𝑁

=

σ𝑖=0
𝑁 𝐺0,𝑖 𝑉𝑖

σ𝑖=0
𝑁 𝐺1,𝑖 𝑉𝑖

σ𝑖=0
𝑁 𝐺2,𝑖 𝑉𝑖

:
:

σ𝑖=0
𝑁 𝐺𝑀,𝑖 𝑉𝑖

Tunable resistor Rm,i

Tunable conductance Gm,i

Tunable resistors with non-volatile memory Synaptic weight

“Multiply and Accumulate”

Gm,0  V0

Gm,1  V1

Gm,i  Vi

Conductance

Resistance

G =
1

R

I =      = G  V
R

V

Voltage

Current

Memristor
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Synaptic Weight Processing Operations
Forward propagation Backward  propagation

Δ𝑤𝑖𝑗 = −𝜂 𝑥𝑖 𝛿𝑗

[W]   Weight matrix

Input vector Update must be proportional to signals on rows (     xi ) and on 

columns (∝ dj )

◼ Symmetric increase and decrease of weight

◼ Analog behavior: > 100 levels preferred  (ca.  8 bit)

Challenge

[W]T Transposed weight matrix

∝

x 𝑾 𝑾𝑻 𝜹
Synaptic 

weight update x 𝑾 𝜹𝚫
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Part 4: ▪ Targeted device properties for analog electrical crossbar arrays
▪Memristive devices for synaptic weight implementation
▪ Examples: Resistive Random Access Memory (ReRAM)

Phase Change Memory (PCM)
Ferroelectric Tunneling Junctions (FTJ)



R. Dangel  - Analog Crossbar Arrays – Future Neuromorphic Workhorses  for Neural Networks

◼ CMOS compatibility
◼ Low voltage operation
◼ Small device footprint
◼ Very short (re-)set time
◼ Long retention time (<-> NVM)
◼ Low drift
◼ High dynamic range
◼ Large resistance range 

(high-resistance → low power)

◼ Reproducibility, low variability
◼ (Some) linearity & symmetry

[Voltage V < 1V]

Operation:

[Current I < mA]

Our Dream-Device:

Programming Scheme:

Pulse Encoding

(Incremental)

[I]

“Programming” Resistance:
(representative, generic characteristic)

R → 0

potentiation

~-1V

R → ∞

depression

~1V

C
o

n
d

u
c

ta
n

c
e

 
G

 =
 1

/R

# pulses

Potentiation Depression

Switch-Sign

Which one works (best)?

→ linear & symmetric

Targeted Device Properties for Analog Electrical Crossbar Arrays

I

V

 Gokmen & Vlasov, Acceleration of Deep NN Training...,
Frontiers in Neuroscience, 2016
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Memristive Devices for Synaptic Weight Implementation
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Potentiation Depression Potentiation Depression

ReRAM PCM FTJ

Others:
- FeRAM (Ferro-Electric RAM)
- MRAM (Magnetic RAM)
- ECRAM (Electro-Chemical RAM)…
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◼ ReRAM (also called RRAM) is one type
of memristive non-volatile memory 
that works by changing the resistance
across a dielectric solid-state material

Sufficiently high voltage Vforming makes 
insulating dielectric material conductive 

◼ Filament-like or homogeneous current 
conduction path(s) induced by defects
(oxygen-vacancies)

◼ Switching between Low Resistance State
(LRS) and High Resistance State (HRS)
by applying suitable voltages -Vreset and 
+Vset

◼ The oxygen vacancies act as charge 
carriers, meaning that the depleted area
has a much lower resistance

ReRAM phases:

• FORMING: creation of conducting filament in dielectric material between electrodes

• RESET (LRS → HRS): partial dissolution of filament

• SET (HRS → LRS): recreation of filament

• STORAGE: retain last resistance 

S
E

T

R
E

S
E

T
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◼ Challenge:

With only one (or a few) localized conductive 
filaments, switching would be quite abrupt 
(between 2 resistance states: LRS and HRS)

However, for use of ReRAM in analog crossbar 
arrays, gradual tuning of resistance with 
many intermediate states is required

 Woo et al. IEEE Electr. 
Dev. Lett. 38, 9 (2017)

Volumetric changes of conductive 
filament(s) (i.e., in lateral dimension)

Use of specifically engineered oxides with
suitable oxygen intercalation(*) properties 
as electrodes

Intercalation: In chemistry, intercalation is the reversible inclusion or insertion of molecules (or ions) into materials… (Wikipedia)



Phase Change Memory (PCM)

SET

RESET

Low Resistance
State (LRS)

High Resistance
State (HRS)

◼ PCM (also called PCRAM) is another memristive
non-volatile memory

◼ PCM shows amorphous and crystalline phase

◼ Rapid and repeated switching between two phases possible

◼ Switching typically induced by optical or electrical heating

◼ Physical properties vary significantly between phases 
crystalline phase     → Low Resistance State (LRS)  
amorphous phase   → High Resistance State (HRS)

Ratio of electrical resistances  RLRS : RHRS = 1 : 100 to 1 : 1000

◼ Many phase change materials are chalcogenides, 
most studied and utilized: Ge2Sb2Te5 (GST)

Two-level-cell PCM
• only two states
• commercially available as

Storage Class Memory (SCM)

Multi-level-cell PCM 
• many intermediate states 
• under development for 

emerging analog crossbar
arrays

 Hegedüs, J. & Elliott, S. R., Nature Mater. 7, 399–405 (2008).
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Ferroelectric Tunneling Junction (FTJ)
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◼ Ferroelectric materials are dielectrics that
exhibit a macroscopic electrical polarization P,
even in absence of an external electric field 
(E = 0  → P =  Premanent). 

By applying an electric field, the macroscopic 
polarization state of ferroelectric material can
be gradually tuned (→ ferroel. hysteresis curve) 
because of polarization switching of individual
domains in the material from       to      or vice 
versa.  

 J. P. Velev et al. , “Predictive modelling of ferroelectric tunnel junctions”, 
npj Computational Materials, vol. 2,  Article no: 16009 (2016)

Material example: BaTiO3

- Cubic phase of BaTiO3

- Perovskite crystal 
- off-center-position of Ti4+

→ Ferroelectric behavior

Ferroelectric hysteresis curve

◼ Ferroelectric Tunneling Junction is based
on a few nm thick ferroelectric barrier layer 
sandwiched between two different electrodes
(typically metal / semiconductor).

Ferroelectric material with boundary conditions:

Ferroelectric tunneling junction

Gradual polarization state tuning possible by 
applying suitable positive or negative voltage 
pulses across FTJ.



Ferroelectric Tunneling Junction (FTJ)
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Dependence of tunneling current and resistance 
from polarization 

Many intermediate polarization states can
be induced by nucleation and growth of 
domains with opposite polarization.

Electrical current through FTJ varies with 
macroscopic polarization state because of the
different tunnel widths for the two opposite 
polarizations states in individual domains.

Electrical resistance of FTJ can be tuned by 
polarization state. → “Tunneling Electro-
Resistance” (TER) with up to 104 x variation.

FTJ retains last resistance value when power 
is turned off.

Low resistance state High resistance state

E
le

c
tr

o
n

a
c

c
u

m
u

la
ti

o
n

E
le

c
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o
n

d
e

p
le
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o

n

Gradual polarization state tuning can be
achieved by applying suitable positive or 
negative voltage pulses across FTJ.

Both situations A & B are for one domain only (A) (B)
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Summary

For the learning (“training”) and use (“inference”) of Artificial Neural Networks, digital (co-)processors 

(CPUs, GPUs, FPGAs and ASICs) in computer systems based on Von-Neumann architecture are used 

almost exclusively today. One promising alternative to these energy-hungry digital logic based 

computer systems is Analog Neuromorphic Computing, where computationally time-consuming and 

therefore expensive operations are performed by specialized accelerators comprising analog elements 

with the promise to improve the performance and power efficiency by factors of 1000 to 10,000.

In general, suitable compute elements are programmable analog devices with non-volatile memory 

capabilities that can be arranged in crossbar arrays to perform various mathematical operations. The 

main requirements for such emerging “non Von-Neumann” architectures are vector-matrix 

multiplications and the ability to provide the transposed matrix for learning as well as means to store 

analog synaptic weights. This mitigates the huge communication overhead for the operands in 

traditional systems, i.e. avoids the time and energy consuming massive data shuffling between 

processor and memory. 


