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Outlook

Partl: = Neuromorphic computing — what is it?
= Neuromorphic tasks in Al
= Anatomy of computational “heavy” workloads — the actual problem
= Computational challenge: Matrix-vector multiplications
= Current and future Al acceleration hardware

Part 3: = Analog electrical crossbar array vs. DNN
= Synaptic weight processing operations
» Targeted device properties for analog electrical crossbar arrays
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Experiment: “Human Brain against Computer”

Task 1: Mathematics
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Experiment: “Human Brain against Computer”

Task 1: Mathematics
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Experiment: “Human Brain against Computer”

Task 2: Image recognition

Image to be recognized
£ | What does the image show?
E @
8| What does the image show?
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Experiment: “Human Brain against Computer”

Task 1: Mathematics Task 2: Image recognition
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obtained in < 1 sec:
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Experiment: “Human Brain against Computer”

Task 1: Mathematics

Task 2: Image recognition
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What makes the Human Brain so Outstanding ?

m Power efficiency: human brain <> = 20 Watts / supercomputers <> up to MWatts
m Brain recognizes patterns and images / can deduce facts from raw (noisy) data

Jo 2™ Brain at neuron level

Brain at neural network level
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Ed http://www.sciencephoto.com/dennis-kunkel-microscopy-collection

Ed http://biomedicalengineering.yolasite.com/neurons.php

m Human brain: ~ 100 billions nerve cells (= neurons) m Signaling between neurons: Spikes, spike trains
m Each neuron receives signals from 1’000 — 10’000 m Neuron activation: “Integrate and Fire”
other neurons via synapses — massive connectivity = Learning: Adjustment of the synaptic weights

Spike Timing Dependent Plasticity:

m Signals transmitted by synapses are adjustable:
“Neurons that fire together wire together”

— “synaptic weight”
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Conceptional Comparison: “Human Brain vs. Computer”

Human brain < Different (complementary) abilities > Today’s Computer

Transistors are processing units
Digital operation

Centralized processor and memory
(Mostly) serial processing

Very fast information processing
Reliable and precise

Nerve cells (neurons) are processing units
Analog operation

Distributed processor and memory
Massively, massively parallel processing
Slow information processing

Redundancy and fault-tolerance properties

Different
structure

Question: Can we mimic the human brain to exploit its superiority in certain applications ?
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Outlook

Partl: = Neuromorphic computing —what is it?
= Neuromorphic tasks in Al
= Anatomy of computational “heavy” workloads — the actual problem
= Computational challenge: Matrix-vector multiplications
= Current and future AI acceleration hardware
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Neuromorphic Computing —What is it ?

Ethymological: “neuro” < related to nerves or nervous system

11 e 9 H http://www.web3.lu/category
morphic” < having form or structure of... Isclonco-philosophy!

Definition: Neuromorphic computing is a brain-inspired signal processing
technology that tries to mimic the neuro-biological architecture
of the brain and its functions.

As interdisciplinary technology, it involves
m biological,
m physical,
m mathematical,
m computer science,
m and electronic engineering concepts
to design and realize new artificial neural network systems.
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Neuromorphic Tasks in Al

Neuromorphic challenges in Al are tasks which normally require human “intellect”, e.g.:

m Memorizing complex information ,
. in the presence of
= Deducing facts from raw (unstructured) Data uncertainty and ambiguity

m Making recommendations and decisions

ﬂ:‘levator Control:

/ Detect or Extract \ [ Act
Emotions Anomalies Recommendations

Make Decisions:
- stop at floor(s)

Memorizing Information:
- remember pending call

s/

Qutonomous Decisio

= — 5 ¢ -. .'- i -;5:
\ Image Classes Segments/
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Anatomy of “Heavy” Computational Workloads — The Actual Problem

Scientific Workloads Al [ Machine Learning
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Computational Challenge: Matrix-Vector Multiplications

Matrix-vector multiplications of the form

— N —_
- Woo Woi1 Wop2 WoNT [X07 Z;V—O 0.1 %1
Wio W11 W12 ... Win X1 D=0 W1,i X
Wx =] W20 W21 W22 Won | - [ %2 [=| 2o Wa x;
| WMo Wmai WMz - wyyl Xy .
L 2ij=0 Wp,i X

are common to the mentioned workloads and dominate the computation time and energy

”
!

consumption. ] . : ]
Matrix-vector multiplications are “computationally expensive

efficient analog implementation of matrix-vector multiplications and
therefore acceleration of Deep Neural Network Learning

— > Develop dedicated hardware (— Analog Crossbar Arrays) which enables
Our mission
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Current and Future Al Acceleration Hardware

{ Pttt N ficioncy

Co-Processors
Central Processing  Graphics Processing  Field-Programmable Application-Specific

Resistive Processing

Unit (CPU) Unit (GPU) Gate-Array (FPGA) Integrated Circuit (ASIC) Unit (RPU)
Ll e
a
_T_ —
ARRNENARN g URRNRnnn —"— —
7’7 —
. . . . . W
Current Workhorse Limited spread Under investigation ®
m CPU iginally designed B GPU iginally developed f based on
s were originally designe s were originally develope B FPGASs containan array o W ASICs are application-specifically
for general computing workloads  for manipulation of images which programmable logic blocks, and designed hardware Analog Crossbar
relies on similar mathematical basis  a hierarchy of reconfigurable ) ] Arrays
than neural networks interconnects B ASICs employ special strategies,
. e.g. optimized memory use or use
W GPUs operate on vectors of data  m FPGA are reconfigurable, what of lower precision arithmetics
in parallel makes evolution of hardware,

framework and software easier
B GPUs are effective at processing B FPGAs are effective at processing

same set of operations in parallel same or different set of operations
(single instruction, multiple data in parallel (multiple instructions,
(SIMD) multiple data (MIMD)

B GPUs have well-defined instruc- B FPGASs do not have predefined
tion-set and fixed data width instruction-set or fixed data width.
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Dutlook

Part 2: = From brain-like to Deep Neural Networks (DNNs)
= Training of DNN with backpropagation algorithm —
Mathematical background
= Status of today’s Deep Neural Network processing
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From Brain to Brain-like Neural Network

Information
processing flow
Ny,

= Omni-directional signal flow
= A-synchronous pulse signals
= Information encoded in signal timing

Difficult to implement efficiently
on standard computer hardware




Artificial Neural Network

Brain-like neural network

Simplified model> Artificial Neural Network (ANN)

m ANNs are neuromorphic computing models, which mimic the brain in a simplified way.
m ANNs are composed of multiple nodes (= artificial neurons) which can be arranged in special configurations

m The first developed, easiest and most common ANN is the:

Feed-forward Deep Neural Network (DNN)

. Input neurons
. Hidden neurons

Information processing flow

. Qutput nodes

4 Synaptic weights

T R \9@%@“‘«;‘:
S \‘;:: \":‘"":’ KE

o
1 | in

Input e T
layer Hidden layers layer

“Cat’,

DNN E> better fit to standard hardware

= Feed-forward sequential processing

= Information encoded in signal amplitude

= Neuron activation: Weighted sum + Threshold
» Training with “Backpropagation algorithm”

£5% .
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Operation Phases of Deep Neural Network (DNN)

very large number
of known samples

Phase 1

Traiingl
Learning

smaller number of
unknown samples
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Computational speed and
efficiency are extremely
important because training
of Deep Neural Networks can
range from days to weeks
(even with high-performance
computers) !




DNN Training by Backpropagation Algorithm (1 of 3)

Generic scheme for iterative error minimization by adjusting the synaptic weights

One or more

hidden layer(s)

e Forward phase input

g 1stnode  COutput
' ™ layer layer

1st
[Step 1: From input layer to hidden layer >|Step 2: From hidden layer to output layer > 1 cI.\ . 31*' 2
and
Y A Y
P Xy =1 Zi@gw’ Zo =1 X, @RS M
R " Vi e N S T Y
T h 0 Activati 2.Wz & Weighted BT Xy @ *ﬂ‘ .
w) ivation [ \:\ function ' W,
X, . i OWelghted function weights weigrjns

’w_m'p. .

xz .WJZ sum
. O _ le [ _ ]2
- 2 =1 Vi yca.rget,f.

3 uoljppuny 10149 jouolyendjed

N .WjN M
. L. iL .
Learning level 1 Learning level 2
How much differs the
A Question 1:| intermediate result vector y
Adjusting weights W;, to minimize & Adjusting weights w ij to minimize € from the target vector ymget

< Step 2: From hidden layer to input layer |<Step 1: From output layer to hidden layer |

How do we have to adjust the

Question 2:| synaptic weights to reduce
£ Backward phase | the error?
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DNN Training by Backpropagation Algorithm (2 of 3)

Neural net as chain of vector operations: Components:

N7
{

m Layersofneurons @ @ @ @
m Synaptic interconnections ——@—»

e\
EO e PN
Xor

}i‘:{"’: é:;f?éﬁi:i}% Mathematical operations:
I"“\": @{Q“‘é‘» /’A‘s —> : Signal vector
W&l - Synaptic weight matrix  [W,]
Output @ : Per.-ele.ment naural (pon-l.inear)
out vector activation function (sigmoid):
vector @"W1 "@"Wz "@"Ws
Accumulate 1“ ___________
Wigo Wigq Wign] [x] [ZizoWig;Xi 5 i
XN Z?’:o M;lM,i X; l
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DNN Training by Backpropagation Algorithm (3 of 3)

For many training case inputs X with target response ytarget:

Forward Propagate: Input X = Response
OISR NI O [7 s Oy 17 nOy (2 n ),

Store neuron activation patterns X; for later use X1 X9 X3

1 2
@ Determine output error E: 8 = Ez[yi — Ytarget i]
[

@ Backward Propagate: Which neuron inputs have

strongest influenceon € ? W71'4_@<-W£<-@<-W§

= Error gradient vectors 6]- 01 0, 03

@ Adjust weights that were active (X x), proportionally
to their influence on error & (X §): AW 4 AW, AW 3

AW =-nx®6 Aw; = —n x; 6]- X1 61 X2 62 X3 63
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Status of Today’s Deep Neural Network Processing

m Processing dominated by large matrix operations )
Forward propagation: 14
Backward propagation:  |[WX Scale o< N2
=
Weight update: AW
Current Neurons/layer
situation . -
m Large training datasets: Thousands of training cases

m Inefficient on standard Von-Neumann architecture systems: ¥ v

~ Output
= (Mostly) serial processing Control uni [ T i
* Low computation to IO ratio et
= & Memory bottleneck

r

Today’s standard computer architecture
(— proposal by John Von-Neumannin 1945)

Need for faster Borrow some concepts from the brain:

and more efficient = Analog signal processing

o = Fully parallel processing
DNN processing = Tight integration of processing and memory

Analog Crossbar Arrays
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Outlook

Part 3: = Analog electrical crossbar array vs. DNN
= Synaptic weight processing operations
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Analog Electrical Crossbar Array

Conductance Implementation Tunable resistor R, Feedforward DNN
1 w/ fully connected neural layers

R Tunable conductance G, ;
Resistance e AN AN
Voltage A \V‘I};“‘k’lﬂ‘&'ﬁ“\. :
SV o | O R R A S
=52 . Ny Varlise” Wb SaQie'
Volt age . Hidden neurons A V‘v/ V5, \V"/.V“:» vy“w

KX
7758

. Output nodes

4 Synaptic weights

LRET YR £ 9
FRglalites )
“Multiply and Accumulate” /

Vol . lVN / \
Mapping
Current 7,,

SN A
I, Goo Goa Gop Gon] [V, ;'V=° Go,i Vi
11 Gl,O Gl,l Gl,Z oo Gl,N V1 i=0 Gl,i ‘/l
[m L |= Gz,o G2,1 Gz,z GZ,N V2= ?]:0 Gz,i Vi

N N : : : : :

Vi ’ ’ :
In= Z —= Z Gm.i*Vi Iy Gmo Gma Gmz - Gynl Wn N ooy
i=0 Rm,r‘ i=0 _Zi=0 M,i Vil

Memristor <:> Synaptic weight Cross-point K Synaptic weight
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Synaptic Weight Processing Operations

Forward propagation

O lixg

Backward propagation

«

wT(8)

x|

T T TS
)

[W]x

5

£0[W] 5

Synaptic @
weight update

AW

AWL']' = —NX; 51

N

—

X  Inputvector

[W] Weight matrix

[W]T Transposed weight matrix

Update must be proportional to signals on rows (o< X;) and on

columns (e §;)

Challenge

m Symmetric increase and decrease of weight
m Analog behavior: > 100 levels preferred (ca. 8 bit)
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Dutlook

Part 4. = Targeted device properties for analog electrical crossbar arrays
= Memristive devices for synaptic weight implementation
= Examples: Resistive Random Access Memory (ReRAM)
Phase Change Memory (PCM)
Ferroelectric Tunneling Junctions (FTJ)
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Targeted Device Properties for Analog Electrical Crossbar Arrays
Our Dream-Device: Operation: “Programming” Resistance:

(representative, generic characteristic)

m CMOS compatibility
m Low voltage operation [Current I < pA]
m Small device footprint It TQ
m Very short (re-)set time ;2—/
m Long retention time (<-> NVM) @é’/
m Low drift P X
m High dynamic range Qil fce?”oo
m Large resistance range 2 ’ge’é\""a“ V
(high-resistance - low power) _ -z -
= Reproducibility, low variability ~ _ =K _// [Voltage V < 1V]
. . /
m (Some) linearity & symmetry
/
/

Programming Scheme:

| d{\ SWitCh@_Sign/ N T
L N

Potentiation  Depression

Which one works (best)?

Pulse Encoding

(Incremental) ‘ HH H >

&

G=1/R

~
Conductance

# pulses

<-
“
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Memristive Devices for Synaptic Weight Implementation

PCM FTJ

Others:
- FeRAM (Ferro-Electric RAM)
AUl B |- MRAM (Magnetic RAM)
ME- S ClIJ, rrier - ECRAM (Electro-Chemical RAM)

.O
Metal Conductive
i O=fi
oxide .. filament
)

Bottom electrode
(semiconductor)

1/R

Conductance G =
y
Conductance

Conductance

N\

Potentiation: Depression Potentiation | Depression Potentiation:Depression

L »
I " I ! "
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Resistive Random Access Memory (ReRAM)

Low Resistance © Oxygen atom
V= +Vforming State (LRS) O Oxygen vacancy
Oxygen ion

m ReRAM (also called RRAM) is one type
of memristive non-volatile memory
that works by changing the resistance
across a dielectric solid-state material

Sufficiently high voltage Vo ming Makes
insulating dielectric material conductive V= DH coee

FORMING: SET: Metat 53
Vo" generation |oxide :.
@)

0%=0+2e

OO0
0000
&
[ Metal Conductive
s (Nfilament
-\ (V2 oxide '
O+2e=Vo'+0 o

V = +Vge

m Filament-like or homogeneous current
conduction path(s) induced by defects
(oxygen-vacancies)

Soft-breakdown

m Switching between Low Resistance State

(LRS) and High Resistance State (HRS) et g P
by applying suitable voltages -V, and oxide oxide Q Residual
+Vset O filament
B The oxygen vacancies act as charge Hiah Resict
carriers, meaning that the depleted area state . (HRS)

has a much lower resistance
ReRAM phases:

e FORMING: creation of conducting filament in dielectric material between electrodes
e RESET (LRS — HRS): partial dissolution of filament

e SET (HRS — LRS): recreation of filament

e STORAGE: retain last resistance

ciplinary Research on
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Resistive Random Access Memory (ReRAM)

m Challenge:

With only one (or a few) localized conductive
filaments, switching would be quite abrupt
(between 2 resistance states: LRS and HRS)

Current (7')

‘A’: Large gap ‘B’: Small gap

Metal p\Condu:tive _

uxide;i)ﬁlamem

=3

-
Voltage (V)

!

However, for use of ReRAM in analog crossbar SO o i v Toming |
arrays, gradual tuning of resistance with = oxide (3 Residual

many intermediate states is required

: L Woo et al. IEEE Electr.

Use of specifically engineered oxides with \je"- Lett. 38, 9 (2017) el

~—

(b)'conven'tional N
mode

suitable oxygen intercalation™ properties o | Taset T
as electrodes wr i
% -
- 10‘1°: |

Volumetric changes of conductive as [
filament(s) (i.e., in lateral dimension) LA ]

10-14 1

BE 3

Intercalation: In chemistry, intercalation is the reversible inclusion or insertion of molecules (or ions) into materials... (Wikipedia)
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Phase Change Memory (PCM)

m PCM (also called PCRAM) is another memristive
non-volatile memory
PCM shows amorphous and crystalline phase

Rapid and repeated switching between two phases possible
Switching typically induced by optical or electrical heating

Physical properties vary significantly between phases
crystalline phase — Low Resistance State (LRS)
amorphous phase — High Resistance State (HRS)

Ratio of electrical resistances R gs: Ryrg=1:100t0o1:1000

m Many phase change materials are chalcogenides,
most studied and utilized: Ge,Sb,Te; (GST)

Low Resistance
State (LRS)

Temperature

High Resistance
A Amorphyzing

State (HRS)

RESET pulse high temperature,
T shorter duration
melt --4/~4----——-------——————===
|IZ|Ing lower temperature,
use longer duration
Tt d A\ ___ T __
cryst
Time
Troom — -
-
Amorphous Crystalline
Phase hase

Hegedis, J. & Elliott, S. R., Nature Mater. 7, 399-405 (2008).

g
Insulator '

Two-level-cell PCM

e only two states
e commercially available as
Storage Class Memory (SCM)

Multi-level-cell PCM

e many intermediate states

e under development for
emerging analog crossbar
arrays

Interdisciplinary Research on
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Ferroelectric Tunneling Junction (FTJ)

_ . . . Ferroelectric hysteresis curve Material example: BaTiO,
n Ferroglectrlc materlgls are d.|electr|cs.tha.t o - Cubic phase of BaTio,
exhibit a macroscopic electrical polarization P, Zation - Perovskite crystal )
even in absence of an external electric field | Wil - off-center-position of Ti
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Ferroelectric material with boundary conditions:

m Ferroelectric Tunneling Junction is based
on a few nm thick ferroelectric barrier layer
sandwiched between two different electrodes
(typically metal / semiconductor).
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Ferroelectric Tunneling Junction (FTJ)

Gradual polarization state taning can b Dependence of tunneling current and resistance
radual polarization state tuning can be -

achieved by applying suitable positive or from polarization
negative voltage pulses across FTJ.

Many intermediate polarization states can (A) Both situations A & B are for one domain only (B)
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Electrical current through FTJ varies with
macroscopic polarization state because of the
different tunnel widths for the two opposite
polarizations states in individual domains.
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Electrical resistance of FTJ can be tuned by Smaller tunneling width Larger tunneling width
polarization state. — “Tunneling Electro- |:> Low resistance state |:> High resistance state
Resistance” (TER) with up to 104 x variation.
FTJ retains last resistance value when power
is turned off.
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Summary

For the learning (“training”) and use (“inference”) of Artificial Neural Networks, digital (co-)processors
(CPUs, GPUs, FPGAs and ASICs) in computer systems based on Von-Neumann architecture are used
almost exclusively today. One promising alternative to these energy-hungry digital logic based
computer systems is Analog Neuromorphic Computing, where computationally time-consuming and
therefore expensive operations are performed by specialized accelerators comprising analog elements
with the promise to improve the performance and power efficiency by factors of 2000 to 10,000.

In general, suitable compute elements are programmable analog devices with non-volatile memory
capabilities that can be arranged in crossbar arrays to perform various mathematical operations. The
main requirements for such emerging “non Von-Neumann” architectures are vector-matrix
multiplications and the ability to provide the transposed matrix for learning as well as means to store
analog synaptic weights. This mitigates the huge communication overhead for the operands in
traditional systems, i.e. avoids the time and energy consuming massive data shuffling between
processor and memory.




